函数y=√(158x^2+173)+110x+25的图像示意图

本文主要介绍函数y=√(158x^2+173)+110x+25的定义域、单调性、凸凹性,并简要画出函数的图像示意图。

方法/步骤

    1

    函数为根式函数,即可解析函数自变量可以取全体实数,所以函数的定义域为:(-∞,+∞)。

    函数y=√(158x^2+173)+110x+25的图像示意图

    2

    形如y=f(x),则x是自变量,它代表着函数图像上每一点的横坐标,自变量的取值范围就是函数的定义域。f是对应法则的代表,它可以由f(x)的解析式决定。

    3

    解析函数的单调性:求出函数的一阶导数,根据函数一阶导数的符号,判断函数的单调性。

    函数y=√(158x^2+173)+110x+25的图像示意图

    4

    如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。

    5

    计算函数的二阶导数,根据二阶导数的符号,即可解析函数的凸凹性和凸凹区间。

    函数y=√(158x^2+173)+110x+25的图像示意图

    6

    如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凸函数的充要条件是f''(x)<=0。

    7

    函数的极限列举,以及五点图,列表,函数上部分点解析表如下:

    函数y=√(158x^2+173)+110x+25的图像示意图

    8

    根据函数的定义域、值域、单调性、凸凹性、奇偶性以及极限等性质,以及函数的单调区间、凸凹区间,可画出函数的示意图。

    函数y=√(158x^2+173)+110x+25的图像示意图END

温馨提示:经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。
免责声明:本文转载来之互联网,不代表本网站的观点和立场。如果你觉得好欢迎分享此网址给你的朋友。
转载请注明出处:https://www.i7q8.com/jiaoyu/187151.html

打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2024年10月19日
下一篇 2024年10月19日
single-end

热门百科

single-end

相关推荐

关注微信