本文详细介绍通过代入法、三角换元法、判别式法、中值替换法、不等式法、几何数形法、构造函数等方法计算ab已知条件下的最大值。
方法/步骤
1
通过代入法、三角换元法、判别式法、中值替换法、不等式法、几何数形法、构造函数等方法计算ab已知条件下的最大值。
2
思路一:直接代入法
根据已知条件,替换b,得到关于a的函数,并根据二次函数性质得ab的取值范围。
ab
=a(9/28-1/14*a)
=-1/14*a^2+9/28*a
=-1/14(a-9/4)^2+81/224,
则当a=9/4时,ab有最大值为81/224。
3
思路二:判别式法
设ab=p,得到b=p/a,代入已知条件关于a的函数,并根据二次函数性质得ab的取值范围。
2a+28b=9,
2a+28p/a=9,
2a^2-9a+28p=0,对a的二次方程有:
判别式△=81-224p≥0,即:
p≤81/224,
此时得ab=p的最大值=81/224。
4
思路三:三角换元法
将ab表示成三角函数,进而得ab的最大值。
由2a+28b=9,要求ab的最大值,不妨设a,b均为正数,
设2a=9(cost)^2,28b=9(sint)^2,则:
a=(cost)^2,b=9/28(sint)^2,代入得:
ab=(cost)^2*9/28(sint)^2,
=81/224*(sin2t)^2,
当sin2t=±1时,ab有最大值=81/224。
5
思路四:中值代换法
设2a=9/2+t,28b=9/2-t,则:
a=(1/2)(9/2+t),b=(1/28)(9/2-t)
此时有:
ab=1/56*(9/2+t)*(9/2-t)
=1/56*(81/4-t^2)。
当t=0时,即:ab≤81/224,
则ab的最大值为81/224。
6
思路五:不等式法
当a,b均为正数时,则:
∵2a+28b≥2√56*ab,
∴(2a+28b)^2≥224*ab,
81≥224*ab,
即:ab≤81/224,
则ab的最大值为81/224。
7
思路六:数形几何法
如图,设直线2a+28b=9上的任意一点P(a0,b0),
op与x轴的夹角为θ,则:
2a0+28b0=9,b0=a0tanθ,
2a0+28a0tanθ=9,得
a0=9/(2+28tanθ),
|a0*b0|=81*|tanθ|/(2+28tanθ)^2,
=81/[(4/|tanθ|)+112+784|tanθ|]
≤81/(112+112)=81/224。
则ab的最大值=81/224.
8
思路七:构造函数法
设函数f(a,b)=ab-λ(2a+28b-9),
则偏导数f'a=b-2λ,f'b=a-28λ,
f'λ=2a+28b-9。
令f'a=f'b=f'λ=0,则:
b=2λ,a=28λ。进一步代入得:
56λ+56λ=9,即λ=9/112.
则有a=9/4,b=9/56.
ab的最大值=9/4*9/56=81/224。
END温馨提示:经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。免责声明:本文转载来之互联网,不代表本网站的观点和立场。如果你觉得好欢迎分享此网址给你的朋友。转载请注明出处:https://www.i7q8.com/jiaoyu/184702.html